Tensorflow logistic regression Iris dataset (csv), Cannot feed value of shape (106,) for Tensor 'Placeholder_1:0', which has shape '(?, 3)'Tensorflow - You must feed a value for placeholder tensor 'X' with dtype floaterror in executing sess.run()Attempted to use a closed SessionError when calling global_variables_initializer in TensorFlowTensorflow error ''Cannot feed value of shape (4, 1) for Tensor 'input:0', which has shape '(?, 2)'''ValueError: Cannot feed value of shape (2, 1000, 1) for Tensor 'Placeholder:0', which has shape '(?, 2)'Passing input tensor size to via tensorflow pipelineBug related to tf.sparse_tensor_dense_matmul()Tensorflow Estimator predict Signature and saving/loadingA shape error in a simple cnn text classfication

Is it improper etiquette to ask your opponent what his/her rating is before the game?

Fear of getting stuck on one programming language / technology that is not used in my country

Travelling outside the UK without a passport

Redundant comparison & "if" before assignment

Why did the Mercure fail?

Is it possible to have a strip of cold climate in the middle of a planet?

Open a doc from terminal, but not by its name

What if a revenant (monster) gains fire resistance?

Pre-mixing cryogenic fuels and using only one fuel tank

What is the evidence for the "tyranny of the majority problem" in a direct democracy context?

Aragorn's "guise" in the Orthanc Stone

How to indicate a cut out for a product window

Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?

Delivering sarcasm

Approximating irrational number to rational number

Calculating Wattage for Resistor in High Frequency Application?

why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?

Why is it that I can sometimes guess the next note?

Should I stop contributing to retirement accounts?

GraphicsGrid with a Label for each Column and Row

What are the purposes of autoencoders?

Why electric field inside a cavity of a non-conducting sphere not zero?

Lowest total scrabble score

Creature in Shazam mid-credits scene?



Tensorflow logistic regression Iris dataset (csv), Cannot feed value of shape (106,) for Tensor 'Placeholder_1:0', which has shape '(?, 3)'


Tensorflow - You must feed a value for placeholder tensor 'X' with dtype floaterror in executing sess.run()Attempted to use a closed SessionError when calling global_variables_initializer in TensorFlowTensorflow error ''Cannot feed value of shape (4, 1) for Tensor 'input:0', which has shape '(?, 2)'''ValueError: Cannot feed value of shape (2, 1000, 1) for Tensor 'Placeholder:0', which has shape '(?, 2)'Passing input tensor size to via tensorflow pipelineBug related to tf.sparse_tensor_dense_matmul()Tensorflow Estimator predict Signature and saving/loadingA shape error in a simple cnn text classfication













0















I am trying to perform logistic regression on the iris dataset that I got from here, i am using tensorflow and i feel it is giving me the error in the feed_dict part of the error line.
I tried changing the shape of the the x_input and y_input according to the error that occurred using np.reshape() but it didn't help.



#training data
x_input=data.loc[0:105, ['SEPAL LENGTH','SEPAL WIDTH','PETAL LENGTH','PETAL WIDTH']]
temp=data['FLOWER']
y_input=temp[0:106]
#test data
x_test=data.loc[106:149, ['SEPAL LENGTH','SEPAL WIDTH','PETAL LENGTH','PETAL WIDTH']]
y_test=temp[106:150]

#placeholders and variables. input has 4 features and output has 3 classes
x=tf.placeholder(tf.float32,shape=[None, 4])
y_=tf.placeholder(tf.float32,shape=[None, 3])
#weight and bias
W=tf.Variable(tf.zeros([4,3]))
b=tf.Variable(tf.zeros([3]))


# X is placeholdre for iris features. We will feed data later on
X = tf.placeholder(tf.float32, [None, 4])
# y is placeholder for iris labels. We will feed data later on
Y = tf.placeholder(tf.float32, [3, None])

w = tf.Variable(tf.zeros([4,3]))
b = tf.Variable(tf.zeros([3]))


# model
#softmax function for multiclass classification
y = tf.nn.softmax(tf.matmul(x, W) + b)
#loss function
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
#optimiser -
train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
#calculating accuracy of our model
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#session parameters
sess = tf.InteractiveSession()
#initialising variables
init = tf.initialize_all_variables()
sess.run(init)
#number of interations
epochs=2000

for step in range(epochs):
_, c=sess.run([train_step,cross_entropy], feed_dict=x: x_input.as_matrix(), y_:y_input.as_matrix()) #error line
if step%500==0:
print(c)


Error stack looks like this



ValueError Traceback (most recent call last)
<ipython-input-13-aa781a046f65> in <module>
1 for step in range(epochs):
----> 2 _, c=sess.run([train_step,cross_entropy], feed_dict=x: x_input.as_matrix(), y_:y_input.as_matrix())
3 if step%500==0:
4 print(c)

c:usershpanaconda3envsmaskrcnnlibsite-packagestensorflowpythonclientsession.py in run(self, fetches, feed_dict, options, run_metadata)
893 try:
894 result = self._run(None, fetches, feed_dict, options_ptr,
--> 895 run_metadata_ptr)
896 if run_metadata:
897 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

c:usershpanaconda3envsmaskrcnnlibsite-packagestensorflowpythonclientsession.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1102 'Cannot feed value of shape %r for Tensor %r, '
1103 'which has shape %r'
-> 1104 % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
1105 if not self.graph.is_feedable(subfeed_t):
1106 raise ValueError('Tensor %s may not be fed.' % subfeed_t)

ValueError: Cannot feed value of shape (106,) for Tensor 'Placeholder_1:0', which has shape '(?, 3)'









share|improve this question


























    0















    I am trying to perform logistic regression on the iris dataset that I got from here, i am using tensorflow and i feel it is giving me the error in the feed_dict part of the error line.
    I tried changing the shape of the the x_input and y_input according to the error that occurred using np.reshape() but it didn't help.



    #training data
    x_input=data.loc[0:105, ['SEPAL LENGTH','SEPAL WIDTH','PETAL LENGTH','PETAL WIDTH']]
    temp=data['FLOWER']
    y_input=temp[0:106]
    #test data
    x_test=data.loc[106:149, ['SEPAL LENGTH','SEPAL WIDTH','PETAL LENGTH','PETAL WIDTH']]
    y_test=temp[106:150]

    #placeholders and variables. input has 4 features and output has 3 classes
    x=tf.placeholder(tf.float32,shape=[None, 4])
    y_=tf.placeholder(tf.float32,shape=[None, 3])
    #weight and bias
    W=tf.Variable(tf.zeros([4,3]))
    b=tf.Variable(tf.zeros([3]))


    # X is placeholdre for iris features. We will feed data later on
    X = tf.placeholder(tf.float32, [None, 4])
    # y is placeholder for iris labels. We will feed data later on
    Y = tf.placeholder(tf.float32, [3, None])

    w = tf.Variable(tf.zeros([4,3]))
    b = tf.Variable(tf.zeros([3]))


    # model
    #softmax function for multiclass classification
    y = tf.nn.softmax(tf.matmul(x, W) + b)
    #loss function
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
    #optimiser -
    train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
    #calculating accuracy of our model
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    #session parameters
    sess = tf.InteractiveSession()
    #initialising variables
    init = tf.initialize_all_variables()
    sess.run(init)
    #number of interations
    epochs=2000

    for step in range(epochs):
    _, c=sess.run([train_step,cross_entropy], feed_dict=x: x_input.as_matrix(), y_:y_input.as_matrix()) #error line
    if step%500==0:
    print(c)


    Error stack looks like this



    ValueError Traceback (most recent call last)
    <ipython-input-13-aa781a046f65> in <module>
    1 for step in range(epochs):
    ----> 2 _, c=sess.run([train_step,cross_entropy], feed_dict=x: x_input.as_matrix(), y_:y_input.as_matrix())
    3 if step%500==0:
    4 print(c)

    c:usershpanaconda3envsmaskrcnnlibsite-packagestensorflowpythonclientsession.py in run(self, fetches, feed_dict, options, run_metadata)
    893 try:
    894 result = self._run(None, fetches, feed_dict, options_ptr,
    --> 895 run_metadata_ptr)
    896 if run_metadata:
    897 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

    c:usershpanaconda3envsmaskrcnnlibsite-packagestensorflowpythonclientsession.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    1102 'Cannot feed value of shape %r for Tensor %r, '
    1103 'which has shape %r'
    -> 1104 % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
    1105 if not self.graph.is_feedable(subfeed_t):
    1106 raise ValueError('Tensor %s may not be fed.' % subfeed_t)

    ValueError: Cannot feed value of shape (106,) for Tensor 'Placeholder_1:0', which has shape '(?, 3)'









    share|improve this question
























      0












      0








      0


      1






      I am trying to perform logistic regression on the iris dataset that I got from here, i am using tensorflow and i feel it is giving me the error in the feed_dict part of the error line.
      I tried changing the shape of the the x_input and y_input according to the error that occurred using np.reshape() but it didn't help.



      #training data
      x_input=data.loc[0:105, ['SEPAL LENGTH','SEPAL WIDTH','PETAL LENGTH','PETAL WIDTH']]
      temp=data['FLOWER']
      y_input=temp[0:106]
      #test data
      x_test=data.loc[106:149, ['SEPAL LENGTH','SEPAL WIDTH','PETAL LENGTH','PETAL WIDTH']]
      y_test=temp[106:150]

      #placeholders and variables. input has 4 features and output has 3 classes
      x=tf.placeholder(tf.float32,shape=[None, 4])
      y_=tf.placeholder(tf.float32,shape=[None, 3])
      #weight and bias
      W=tf.Variable(tf.zeros([4,3]))
      b=tf.Variable(tf.zeros([3]))


      # X is placeholdre for iris features. We will feed data later on
      X = tf.placeholder(tf.float32, [None, 4])
      # y is placeholder for iris labels. We will feed data later on
      Y = tf.placeholder(tf.float32, [3, None])

      w = tf.Variable(tf.zeros([4,3]))
      b = tf.Variable(tf.zeros([3]))


      # model
      #softmax function for multiclass classification
      y = tf.nn.softmax(tf.matmul(x, W) + b)
      #loss function
      cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
      #optimiser -
      train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
      #calculating accuracy of our model
      correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      #session parameters
      sess = tf.InteractiveSession()
      #initialising variables
      init = tf.initialize_all_variables()
      sess.run(init)
      #number of interations
      epochs=2000

      for step in range(epochs):
      _, c=sess.run([train_step,cross_entropy], feed_dict=x: x_input.as_matrix(), y_:y_input.as_matrix()) #error line
      if step%500==0:
      print(c)


      Error stack looks like this



      ValueError Traceback (most recent call last)
      <ipython-input-13-aa781a046f65> in <module>
      1 for step in range(epochs):
      ----> 2 _, c=sess.run([train_step,cross_entropy], feed_dict=x: x_input.as_matrix(), y_:y_input.as_matrix())
      3 if step%500==0:
      4 print(c)

      c:usershpanaconda3envsmaskrcnnlibsite-packagestensorflowpythonclientsession.py in run(self, fetches, feed_dict, options, run_metadata)
      893 try:
      894 result = self._run(None, fetches, feed_dict, options_ptr,
      --> 895 run_metadata_ptr)
      896 if run_metadata:
      897 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

      c:usershpanaconda3envsmaskrcnnlibsite-packagestensorflowpythonclientsession.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
      1102 'Cannot feed value of shape %r for Tensor %r, '
      1103 'which has shape %r'
      -> 1104 % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
      1105 if not self.graph.is_feedable(subfeed_t):
      1106 raise ValueError('Tensor %s may not be fed.' % subfeed_t)

      ValueError: Cannot feed value of shape (106,) for Tensor 'Placeholder_1:0', which has shape '(?, 3)'









      share|improve this question














      I am trying to perform logistic regression on the iris dataset that I got from here, i am using tensorflow and i feel it is giving me the error in the feed_dict part of the error line.
      I tried changing the shape of the the x_input and y_input according to the error that occurred using np.reshape() but it didn't help.



      #training data
      x_input=data.loc[0:105, ['SEPAL LENGTH','SEPAL WIDTH','PETAL LENGTH','PETAL WIDTH']]
      temp=data['FLOWER']
      y_input=temp[0:106]
      #test data
      x_test=data.loc[106:149, ['SEPAL LENGTH','SEPAL WIDTH','PETAL LENGTH','PETAL WIDTH']]
      y_test=temp[106:150]

      #placeholders and variables. input has 4 features and output has 3 classes
      x=tf.placeholder(tf.float32,shape=[None, 4])
      y_=tf.placeholder(tf.float32,shape=[None, 3])
      #weight and bias
      W=tf.Variable(tf.zeros([4,3]))
      b=tf.Variable(tf.zeros([3]))


      # X is placeholdre for iris features. We will feed data later on
      X = tf.placeholder(tf.float32, [None, 4])
      # y is placeholder for iris labels. We will feed data later on
      Y = tf.placeholder(tf.float32, [3, None])

      w = tf.Variable(tf.zeros([4,3]))
      b = tf.Variable(tf.zeros([3]))


      # model
      #softmax function for multiclass classification
      y = tf.nn.softmax(tf.matmul(x, W) + b)
      #loss function
      cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
      #optimiser -
      train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
      #calculating accuracy of our model
      correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      #session parameters
      sess = tf.InteractiveSession()
      #initialising variables
      init = tf.initialize_all_variables()
      sess.run(init)
      #number of interations
      epochs=2000

      for step in range(epochs):
      _, c=sess.run([train_step,cross_entropy], feed_dict=x: x_input.as_matrix(), y_:y_input.as_matrix()) #error line
      if step%500==0:
      print(c)


      Error stack looks like this



      ValueError Traceback (most recent call last)
      <ipython-input-13-aa781a046f65> in <module>
      1 for step in range(epochs):
      ----> 2 _, c=sess.run([train_step,cross_entropy], feed_dict=x: x_input.as_matrix(), y_:y_input.as_matrix())
      3 if step%500==0:
      4 print(c)

      c:usershpanaconda3envsmaskrcnnlibsite-packagestensorflowpythonclientsession.py in run(self, fetches, feed_dict, options, run_metadata)
      893 try:
      894 result = self._run(None, fetches, feed_dict, options_ptr,
      --> 895 run_metadata_ptr)
      896 if run_metadata:
      897 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

      c:usershpanaconda3envsmaskrcnnlibsite-packagestensorflowpythonclientsession.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
      1102 'Cannot feed value of shape %r for Tensor %r, '
      1103 'which has shape %r'
      -> 1104 % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
      1105 if not self.graph.is_feedable(subfeed_t):
      1106 raise ValueError('Tensor %s may not be fed.' % subfeed_t)

      ValueError: Cannot feed value of shape (106,) for Tensor 'Placeholder_1:0', which has shape '(?, 3)'






      python tensorflow logistic-regression






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 7 at 7:36









      Prakruti ChandakPrakruti Chandak

      14




      14






















          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55038397%2ftensorflow-logistic-regression-iris-dataset-csv-cannot-feed-value-of-shape-1%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55038397%2ftensorflow-logistic-regression-iris-dataset-csv-cannot-feed-value-of-shape-1%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          1928 у кіно

          Захаров Федір Захарович

          Ель Греко