Tensorflow JavaScript error when trying to build LinearregressionWhen to use double or single quotes in JavaScript?How to execute a JavaScript function when I have its name as a stringHow to find event listeners on a DOM node when debugging or from the JavaScript code?Pure JavaScript equivalent of jQuery's $.ready() - how to call a function when the page/DOM is ready for it“Cross origin requests are only supported for HTTP.” error when loading a local fileError when trying to build tensorflowGetting “PermissionDeniedError” when running the example program on TensorflowGetting TypeError while training a classifier for iris flower datasetTensorflow model does not minimize errorImplementing LinearRegression model in tensorflow
Non-Jewish family in an Orthodox Jewish Wedding
Do airline pilots ever risk not hearing communication directed to them specifically, from traffic controllers?
N.B. ligature in Latex
How to make payment on the internet without leaving a money trail?
whey we use polarized capacitor?
Can you lasso down a wizard who is using the Levitate spell?
DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?
Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?
If Manufacturer spice model and Datasheet give different values which should I use?
Why was the small council so happy for Tyrion to become the Master of Coin?
What defenses are there against being summoned by the Gate spell?
Schwarzchild Radius of the Universe
Example of a relative pronoun
Copenhagen passport control - US citizen
What is the meaning of "of trouble" in the following sentence?
Why is this code 6.5x slower with optimizations enabled?
I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine
Can a German sentence have two subjects?
Is there a minimum number of transactions in a block?
How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?
"which" command doesn't work / path of Safari?
What Brexit solution does the DUP want?
What do you call a Matrix-like slowdown and camera movement effect?
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
Tensorflow JavaScript error when trying to build Linearregression
When to use double or single quotes in JavaScript?How to execute a JavaScript function when I have its name as a stringHow to find event listeners on a DOM node when debugging or from the JavaScript code?Pure JavaScript equivalent of jQuery's $.ready() - how to call a function when the page/DOM is ready for it“Cross origin requests are only supported for HTTP.” error when loading a local fileError when trying to build tensorflowGetting “PermissionDeniedError” when running the example program on TensorflowGetting TypeError while training a classifier for iris flower datasetTensorflow model does not minimize errorImplementing LinearRegression model in tensorflow
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;
I got this error while trying to build linear regression function using the JavaScript framework Tensorflow:
C: .regressionsnode_modules@tensorflowtfjs-nodenode_modules@tensorflowtfjs-coredistenvironment.js:147
throw new Error("Unknown feature " + feature + ".");
^
Error: Unknown feature TENSORLIKE_CHECK_SHAPE_CONSISTENCY.
I think that the bug is in this function:
at LinearRegression.processFeatures (C:.linear-regression.js:72:19)
Here is the line 72 in the "linear-regression" directory:
features = tf.tensor(features);
and feature
variable is called from at new LinearRegression (C:.regressionslinear-regression.js:17:26)
const tf = require('@tensorflow/tfjs');
const _ = require('lodash');
/**
* Labels = Tensor of label data
* Features = Tensor of feature data
* n = Number of observations
* W (Weights) = M and B in a tensor
* ( ' ) = transpose
*
* Slope of MSE with respect to M and B function
* dMSE / M and B = Features' * ( (Features*W) - Labels) / n
*/
class LinearRegression
constructor(features, labels, options)
this.features = this.processFeatures(features);
this.labels = tf.tensor(labels);
this.options = Object.assign(
learningRate: 0.1, iterations: 1000 ,
options
);
this.W = tf.zeros([this.features.shape[1],1]);
// vectorize solution
gradientDecsent()
const currentGuesses = this.features.matMul(this.W);
const differences = currentGuesses.sub(this.labels)
const slopes = this.features
.transpose()
.matMul(differences)
.div(this.features.shape[0]);
this.W = this.W.sub(slopes.mul(this.options.learningRate)); // W.shape [2 ,1] now
train()
for (let i = 0; i < this.options.iterations; i++)
this.gradientDecsent();
test(testFeatures, testLabels)
testFeatures = this.processFeatures(testFeatures); // this.features.shape [50, 1]
testLabels = tf.tensor(testLabels); // this.labels.shape [50, 1]
const predictions = testFeatures.matMul(this.W); //error: multiplicatiuon NOT ALLOWED = [50,1] * [2, 1]
//@dev: result in (-) negative number = result of if res > tot
const res = testLabels
.sub(predictions)
.pow(2)
.sum()
.get();
const tot = testLabels
.sub(testLabels.mean())
.pow(2)
.sum()
.get();
return 1 - res / tot;
processFeatures(features)
features = tf.tensor(features);
if(this.mean && this.variance)
return features.sub(this.mean).div(this.variance.pow(0.5));
else
features = this.standardize(features);
features = tf.ones([features.shape[0], 1]).concat(features, 1);
return features;
standardize(features)
const mean, variance = tf.moments(features, 0);
this.mean = mean;
this.variance = variance;
return features.sub(this.mean).div(this.variance.pow(0.5));
module.exports = LinearRegression;
I can find the error in the metrics. I am guessing the error is from a multiplication of matrices syntax which is not allowed and the compiler is giving me an error.
How can I fix this error?
javascript tensorflow machine-learning
add a comment |
I got this error while trying to build linear regression function using the JavaScript framework Tensorflow:
C: .regressionsnode_modules@tensorflowtfjs-nodenode_modules@tensorflowtfjs-coredistenvironment.js:147
throw new Error("Unknown feature " + feature + ".");
^
Error: Unknown feature TENSORLIKE_CHECK_SHAPE_CONSISTENCY.
I think that the bug is in this function:
at LinearRegression.processFeatures (C:.linear-regression.js:72:19)
Here is the line 72 in the "linear-regression" directory:
features = tf.tensor(features);
and feature
variable is called from at new LinearRegression (C:.regressionslinear-regression.js:17:26)
const tf = require('@tensorflow/tfjs');
const _ = require('lodash');
/**
* Labels = Tensor of label data
* Features = Tensor of feature data
* n = Number of observations
* W (Weights) = M and B in a tensor
* ( ' ) = transpose
*
* Slope of MSE with respect to M and B function
* dMSE / M and B = Features' * ( (Features*W) - Labels) / n
*/
class LinearRegression
constructor(features, labels, options)
this.features = this.processFeatures(features);
this.labels = tf.tensor(labels);
this.options = Object.assign(
learningRate: 0.1, iterations: 1000 ,
options
);
this.W = tf.zeros([this.features.shape[1],1]);
// vectorize solution
gradientDecsent()
const currentGuesses = this.features.matMul(this.W);
const differences = currentGuesses.sub(this.labels)
const slopes = this.features
.transpose()
.matMul(differences)
.div(this.features.shape[0]);
this.W = this.W.sub(slopes.mul(this.options.learningRate)); // W.shape [2 ,1] now
train()
for (let i = 0; i < this.options.iterations; i++)
this.gradientDecsent();
test(testFeatures, testLabels)
testFeatures = this.processFeatures(testFeatures); // this.features.shape [50, 1]
testLabels = tf.tensor(testLabels); // this.labels.shape [50, 1]
const predictions = testFeatures.matMul(this.W); //error: multiplicatiuon NOT ALLOWED = [50,1] * [2, 1]
//@dev: result in (-) negative number = result of if res > tot
const res = testLabels
.sub(predictions)
.pow(2)
.sum()
.get();
const tot = testLabels
.sub(testLabels.mean())
.pow(2)
.sum()
.get();
return 1 - res / tot;
processFeatures(features)
features = tf.tensor(features);
if(this.mean && this.variance)
return features.sub(this.mean).div(this.variance.pow(0.5));
else
features = this.standardize(features);
features = tf.ones([features.shape[0], 1]).concat(features, 1);
return features;
standardize(features)
const mean, variance = tf.moments(features, 0);
this.mean = mean;
this.variance = variance;
return features.sub(this.mean).div(this.variance.pow(0.5));
module.exports = LinearRegression;
I can find the error in the metrics. I am guessing the error is from a multiplication of matrices syntax which is not allowed and the compiler is giving me an error.
How can I fix this error?
javascript tensorflow machine-learning
add a comment |
I got this error while trying to build linear regression function using the JavaScript framework Tensorflow:
C: .regressionsnode_modules@tensorflowtfjs-nodenode_modules@tensorflowtfjs-coredistenvironment.js:147
throw new Error("Unknown feature " + feature + ".");
^
Error: Unknown feature TENSORLIKE_CHECK_SHAPE_CONSISTENCY.
I think that the bug is in this function:
at LinearRegression.processFeatures (C:.linear-regression.js:72:19)
Here is the line 72 in the "linear-regression" directory:
features = tf.tensor(features);
and feature
variable is called from at new LinearRegression (C:.regressionslinear-regression.js:17:26)
const tf = require('@tensorflow/tfjs');
const _ = require('lodash');
/**
* Labels = Tensor of label data
* Features = Tensor of feature data
* n = Number of observations
* W (Weights) = M and B in a tensor
* ( ' ) = transpose
*
* Slope of MSE with respect to M and B function
* dMSE / M and B = Features' * ( (Features*W) - Labels) / n
*/
class LinearRegression
constructor(features, labels, options)
this.features = this.processFeatures(features);
this.labels = tf.tensor(labels);
this.options = Object.assign(
learningRate: 0.1, iterations: 1000 ,
options
);
this.W = tf.zeros([this.features.shape[1],1]);
// vectorize solution
gradientDecsent()
const currentGuesses = this.features.matMul(this.W);
const differences = currentGuesses.sub(this.labels)
const slopes = this.features
.transpose()
.matMul(differences)
.div(this.features.shape[0]);
this.W = this.W.sub(slopes.mul(this.options.learningRate)); // W.shape [2 ,1] now
train()
for (let i = 0; i < this.options.iterations; i++)
this.gradientDecsent();
test(testFeatures, testLabels)
testFeatures = this.processFeatures(testFeatures); // this.features.shape [50, 1]
testLabels = tf.tensor(testLabels); // this.labels.shape [50, 1]
const predictions = testFeatures.matMul(this.W); //error: multiplicatiuon NOT ALLOWED = [50,1] * [2, 1]
//@dev: result in (-) negative number = result of if res > tot
const res = testLabels
.sub(predictions)
.pow(2)
.sum()
.get();
const tot = testLabels
.sub(testLabels.mean())
.pow(2)
.sum()
.get();
return 1 - res / tot;
processFeatures(features)
features = tf.tensor(features);
if(this.mean && this.variance)
return features.sub(this.mean).div(this.variance.pow(0.5));
else
features = this.standardize(features);
features = tf.ones([features.shape[0], 1]).concat(features, 1);
return features;
standardize(features)
const mean, variance = tf.moments(features, 0);
this.mean = mean;
this.variance = variance;
return features.sub(this.mean).div(this.variance.pow(0.5));
module.exports = LinearRegression;
I can find the error in the metrics. I am guessing the error is from a multiplication of matrices syntax which is not allowed and the compiler is giving me an error.
How can I fix this error?
javascript tensorflow machine-learning
I got this error while trying to build linear regression function using the JavaScript framework Tensorflow:
C: .regressionsnode_modules@tensorflowtfjs-nodenode_modules@tensorflowtfjs-coredistenvironment.js:147
throw new Error("Unknown feature " + feature + ".");
^
Error: Unknown feature TENSORLIKE_CHECK_SHAPE_CONSISTENCY.
I think that the bug is in this function:
at LinearRegression.processFeatures (C:.linear-regression.js:72:19)
Here is the line 72 in the "linear-regression" directory:
features = tf.tensor(features);
and feature
variable is called from at new LinearRegression (C:.regressionslinear-regression.js:17:26)
const tf = require('@tensorflow/tfjs');
const _ = require('lodash');
/**
* Labels = Tensor of label data
* Features = Tensor of feature data
* n = Number of observations
* W (Weights) = M and B in a tensor
* ( ' ) = transpose
*
* Slope of MSE with respect to M and B function
* dMSE / M and B = Features' * ( (Features*W) - Labels) / n
*/
class LinearRegression
constructor(features, labels, options)
this.features = this.processFeatures(features);
this.labels = tf.tensor(labels);
this.options = Object.assign(
learningRate: 0.1, iterations: 1000 ,
options
);
this.W = tf.zeros([this.features.shape[1],1]);
// vectorize solution
gradientDecsent()
const currentGuesses = this.features.matMul(this.W);
const differences = currentGuesses.sub(this.labels)
const slopes = this.features
.transpose()
.matMul(differences)
.div(this.features.shape[0]);
this.W = this.W.sub(slopes.mul(this.options.learningRate)); // W.shape [2 ,1] now
train()
for (let i = 0; i < this.options.iterations; i++)
this.gradientDecsent();
test(testFeatures, testLabels)
testFeatures = this.processFeatures(testFeatures); // this.features.shape [50, 1]
testLabels = tf.tensor(testLabels); // this.labels.shape [50, 1]
const predictions = testFeatures.matMul(this.W); //error: multiplicatiuon NOT ALLOWED = [50,1] * [2, 1]
//@dev: result in (-) negative number = result of if res > tot
const res = testLabels
.sub(predictions)
.pow(2)
.sum()
.get();
const tot = testLabels
.sub(testLabels.mean())
.pow(2)
.sum()
.get();
return 1 - res / tot;
processFeatures(features)
features = tf.tensor(features);
if(this.mean && this.variance)
return features.sub(this.mean).div(this.variance.pow(0.5));
else
features = this.standardize(features);
features = tf.ones([features.shape[0], 1]).concat(features, 1);
return features;
standardize(features)
const mean, variance = tf.moments(features, 0);
this.mean = mean;
this.variance = variance;
return features.sub(this.mean).div(this.variance.pow(0.5));
module.exports = LinearRegression;
I can find the error in the metrics. I am guessing the error is from a multiplication of matrices syntax which is not allowed and the compiler is giving me an error.
How can I fix this error?
const tf = require('@tensorflow/tfjs');
const _ = require('lodash');
/**
* Labels = Tensor of label data
* Features = Tensor of feature data
* n = Number of observations
* W (Weights) = M and B in a tensor
* ( ' ) = transpose
*
* Slope of MSE with respect to M and B function
* dMSE / M and B = Features' * ( (Features*W) - Labels) / n
*/
class LinearRegression
constructor(features, labels, options)
this.features = this.processFeatures(features);
this.labels = tf.tensor(labels);
this.options = Object.assign(
learningRate: 0.1, iterations: 1000 ,
options
);
this.W = tf.zeros([this.features.shape[1],1]);
// vectorize solution
gradientDecsent()
const currentGuesses = this.features.matMul(this.W);
const differences = currentGuesses.sub(this.labels)
const slopes = this.features
.transpose()
.matMul(differences)
.div(this.features.shape[0]);
this.W = this.W.sub(slopes.mul(this.options.learningRate)); // W.shape [2 ,1] now
train()
for (let i = 0; i < this.options.iterations; i++)
this.gradientDecsent();
test(testFeatures, testLabels)
testFeatures = this.processFeatures(testFeatures); // this.features.shape [50, 1]
testLabels = tf.tensor(testLabels); // this.labels.shape [50, 1]
const predictions = testFeatures.matMul(this.W); //error: multiplicatiuon NOT ALLOWED = [50,1] * [2, 1]
//@dev: result in (-) negative number = result of if res > tot
const res = testLabels
.sub(predictions)
.pow(2)
.sum()
.get();
const tot = testLabels
.sub(testLabels.mean())
.pow(2)
.sum()
.get();
return 1 - res / tot;
processFeatures(features)
features = tf.tensor(features);
if(this.mean && this.variance)
return features.sub(this.mean).div(this.variance.pow(0.5));
else
features = this.standardize(features);
features = tf.ones([features.shape[0], 1]).concat(features, 1);
return features;
standardize(features)
const mean, variance = tf.moments(features, 0);
this.mean = mean;
this.variance = variance;
return features.sub(this.mean).div(this.variance.pow(0.5));
module.exports = LinearRegression;
const tf = require('@tensorflow/tfjs');
const _ = require('lodash');
/**
* Labels = Tensor of label data
* Features = Tensor of feature data
* n = Number of observations
* W (Weights) = M and B in a tensor
* ( ' ) = transpose
*
* Slope of MSE with respect to M and B function
* dMSE / M and B = Features' * ( (Features*W) - Labels) / n
*/
class LinearRegression
constructor(features, labels, options)
this.features = this.processFeatures(features);
this.labels = tf.tensor(labels);
this.options = Object.assign(
learningRate: 0.1, iterations: 1000 ,
options
);
this.W = tf.zeros([this.features.shape[1],1]);
// vectorize solution
gradientDecsent()
const currentGuesses = this.features.matMul(this.W);
const differences = currentGuesses.sub(this.labels)
const slopes = this.features
.transpose()
.matMul(differences)
.div(this.features.shape[0]);
this.W = this.W.sub(slopes.mul(this.options.learningRate)); // W.shape [2 ,1] now
train()
for (let i = 0; i < this.options.iterations; i++)
this.gradientDecsent();
test(testFeatures, testLabels)
testFeatures = this.processFeatures(testFeatures); // this.features.shape [50, 1]
testLabels = tf.tensor(testLabels); // this.labels.shape [50, 1]
const predictions = testFeatures.matMul(this.W); //error: multiplicatiuon NOT ALLOWED = [50,1] * [2, 1]
//@dev: result in (-) negative number = result of if res > tot
const res = testLabels
.sub(predictions)
.pow(2)
.sum()
.get();
const tot = testLabels
.sub(testLabels.mean())
.pow(2)
.sum()
.get();
return 1 - res / tot;
processFeatures(features)
features = tf.tensor(features);
if(this.mean && this.variance)
return features.sub(this.mean).div(this.variance.pow(0.5));
else
features = this.standardize(features);
features = tf.ones([features.shape[0], 1]).concat(features, 1);
return features;
standardize(features)
const mean, variance = tf.moments(features, 0);
this.mean = mean;
this.variance = variance;
return features.sub(this.mean).div(this.variance.pow(0.5));
module.exports = LinearRegression;
javascript tensorflow machine-learning
javascript tensorflow machine-learning
edited Mar 8 at 6:10
Pikachu the Purple Wizard
2,06361529
2,06361529
asked Mar 8 at 5:52
miro_murasmiro_muras
14
14
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55057449%2ftensorflow-javascript-error-when-trying-to-build-linearregression%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55057449%2ftensorflow-javascript-error-when-trying-to-build-linearregression%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown